
GraphSnapShot: Graph Machine Learning Acceleration
through Fast Arch, Storage, Caching and Retrieval

Anonymous authors
Paper under double-blind review

Abstract

Large-scale graph machine learning suffers from prohibitive I/O latency, memory bottle-
necks, and redundant computation due to the complexity of multi-hop neighbor retrieval
and dynamic topology updates. We present GraphSnapShot: Graph Machine Learn-
ing Acceleration through Fast Arch, Storage, Caching and Retrieval, a system
that decouples graph storage layout from runtime cache management to maximize data
reuse and access efficiency. GraphSnapShot introduces two key components: (1) SEMHS,
a hop-aware storage layout that co-locates neighbors in contiguous disk slabs for efficient
one-burst DMA access; and (2) GraphSDSampler, a multi-level variance-adaptive caching
module that optimizes refresh policies based on gradient statistics. Together, they form a
hybrid disk–cache–memory architecture that supports high-throughput training over billion-
scale graphs. Experiments on ogbn-arxiv, ogbn-products, and ogbn-mag demonstrate that
GraphSnapShot achieves up to 4.9× loader throughput, 83.5% GPU memory savings, and
29.6% end-to-end training time reduction compared to baselines like DGL’s NeighborSam-
pler and uniform samplers. These results establish GraphSnapShot as a scalable and efficient
solution for dynamic graph learning at industrial scale.

1 Introduction

Graph Neural Networks (GNNs) have become the cornerstone of machine learning on relational data, with
applications spanning recommendation systems, biology, social networks, and more (Wu et al., 2020; Zhou
et al., 2020). As the scale of graph data increases—now reaching billions of nodes and edges—training
GNNs efficiently has become a core systems challenge. While prior efforts focus on optimizing the model
architecture or sampling techniques (Hamilton et al., 2017; Zeng et al., 2020), the bottleneck in practice is
increasingly the I/O and memory system: fetching multi-hop neighborhoods from disk, maintaining feature
caches, and avoiding GPU stalls due to irregular memory access patterns.

A central performance gap emerges from the mismatch between the computational patterns of GNNs and the
underlying graph storage and retrieval systems. In conventional frameworks such as DGL (Wang et al., 2019)
or PyG (Fey & Lenssen, 2019), each mini-batch triggers costly multi-hop sampling that requires traversing the
graph multiple times or storing large subgraphs in host memory. These approaches suffer from high variance
in sampling latency, poor cache reuse, and duplicated data movement across epochs. More critically, they
often fail to scale to real-world dynamic graphs where topology and node features evolve during training.

To address these challenges, we propose GraphSnapShot: Graph Machine Learning Acceleration
through Fast Arch, Storage, Caching and Retrieval, a system that fundamentally rethinks the ar-
chitecture of graph learning pipelines by decoupling storage layout from runtime caching and retrieval.
GraphSnapShot is designed to answer the following question: How can we serve large-scale GNN sampling
requests with bounded latency, predictable memory usage, and minimal I/O overhead?

Motivating example. Consider training a 3-layer GNN on ogbn-products, a dataset with 2.4 billion edges
and hundreds of thousands of training seeds. A standard neighborhood sampler requires up to 600 million
edges per epoch, with each batch invoking tens of thousands of random I/O operations. Even with large

1

CPU DRAM and GPU HBM, the system quickly becomes saturated, leading to underutilized accelerators
and prolonged training cycles. What if we could pre-organize the edges such that all neighbors required by
each hop can be read in a single sequential burst, and cache hot subgraphs dynamically based on learning
signal?

To this end, GraphSnapShot introduces two key system-level innovations:

• SEMHS (Sampling Edges with Multi-Hop Strategy): a storage layout that organizes edge
data into hop-specific slabs, enabling one-burst DMA access to all required neighbors across hops.

• GraphSDSampler: a multi-tier, variance-adaptive caching system that optimizes refresh policies
based on gradient statistics.

These components form a hybrid disk–cache–memory architecture that transforms the traditionally stochastic
and irregular sampling process into a predictable, linear pipeline.

We conduct extensive experiments across three representative datasets—ogbn-arxiv, ogbn-products, and
ogbn-mag—demonstrating that GraphSnapShot achieves:

• Up to 4.9× loader throughput improvement compared to CSR + uniform samplers;

• Up to 83.5% GPU memory reduction via efficient caching and shared reuse;

• Up to 29.6% end-to-end training time reduction without sacrificing model accuracy.

Our contributions can be summarized as follows:

• We identify fundamental I/O and cache inefficiencies in existing GNN training systems and frame
the architectural requirements for high-throughput, memory-efficient graph learning.

• We propose GraphSnapShot, a novel system composed of SEMHS and GraphSDSampler, which
jointly optimize storage layout and cache refresh policies under a unified mathematical formulation.

• We provide theoretical and empirical analysis showing that GraphSnapShot achieves asymptotically
optimal I/O complexity while supporting dynamic graphs.

• We validate our system through large-scale experiments, demonstrating substantial speedups and
memory savings on standard GNN benchmarks.

By bridging graph architecture, storage layout, caching, and retrieval into a coherent system design, Graph-
SnapShot sets a new foundation for scalable graph machine learning.

2 Related Work

2.1 Graph Neural Network Systems

GNN systems aim to scale graph neural network training and inference across large-scale graphs. A line of
early works such as DGL (Wang et al., 2019) and PyG (Fey & Lenssen, 2019) provide high-level abstrac-
tions for message passing and neighborhood aggregation, often assuming that the full graph or mini-batch
subgraphs can be held in GPU memory. However, as real-world graphs grow to billions of edges, full-graph
training becomes impractical. Systems like DistDGL (Zheng et al., 2020) and NeuGraph (Ma et al., 2019)
address distributed training across GPU clusters, but often rely on expensive inter-node communication.

More recently, storage-aware systems such as Marius (Mohoney et al., 2021) and GraphBolt (Mariappan
& Vora, 2019) have adopted tiered memory hierarchies, where graph structure and node embeddings are
partially stored on disk. While effective in reducing memory footprint, these systems treat sampling as
a generic key–value lookup problem and ignore disk layout optimizations. In contrast, GraphSnapShot
introduces a hop-aware edge layout strategy (SEMHS) to transform random neighbor access into a single
sequential burst, reducing I/O latency and improving throughput.

2

2.2 Sampling and Caching for GNNs

Multi-hop neighbor explosion is a central challenge in GNN sampling. Techniques such as FastGCN (Chen
et al., 2018), GraphSAINT (Zeng et al., 2020), and NeuGraph (Ma et al., 2019) reduce sampling complexity
via stochastic estimation and random walks. However, these samplers are largely compute-oriented and still
suffer from high memory traffic when deployed at scale.

Caching has been proposed to alleviate sampling variance and I/O cost. DGL’s NeighborSampler (Wang
et al., 2019) and PyG’s ClusterLoader (Fey & Lenssen, 2019) retain subgraph structures across epochs, yet
they assume static graphs and fail to adapt to dynamic training signals or topology changes. Other works
such as GNNAdvisor (Wang et al., 2021) and PinSage (Ying et al., 2018) embed sampling logic directly into
fused kernels but lack generalizability to evolving graphs. In contrast, GraphSnapShot formalizes caching
as a control problem and introduces GraphSDSampler, a hierarchical cache with adaptive refresh policies
guided by gradient statistics and sampling variance.

2.3 Disk-Based Graph Processing and Layout Optimization

Disk-based graph engines such as GraphChi (Kyrola et al., 2012) and X-Stream (Roy et al., 2013) pioneered
vertex-centric models for out-of-core processing, demonstrating that sequential disk access far outperforms
random I/O. Subsequent systems like TurboGraph (Han et al., 2013) and GridGraph (Zhu et al., 2015)
improved partitioning and streaming strategies but were not designed for training GNNs.

Edge layout optimization has also been explored in the context of reachability queries and graph
databases (Yang et al., 2022), where data locality is critical. SEMHS in GraphSnapShot extends this idea
to the GNN context by organizing edges into hop-specific slabs, ensuring that the neighborhoods of a seed
node can be fetched with minimal disk movement. This design enables constant-cost retrieval under variable
degrees, a feature absent in general-purpose graph stores.

2.4 Dynamic Graph Learning

Dynamic graph learning is a rapidly growing area where the structure or features of the graph evolve over
time. Approaches such as EvolveGCN (Pareja et al., 2020) and TGN (Rossi et al., 2020) learn time-
aware embeddings, while others like DynGEM (Goyal et al., 2018) perform incremental embedding updates.
However, these methods typically assume in-memory graphs and do not address the underlying storage or
caching bottlenecks.

GraphSnapShot complements dynamic graph models by providing a system-level backbone that supports
timely snapshot updates, adaptive caching, and low-latency multi-hop fetch under dynamic topologies. The
GraphSDSampler component uses real-time signal (e.g., gradient variance) to decide which cached subgraphs
to refresh, bridging the gap between model dynamics and system performance.

Summary. While existing works have addressed parts of the GNN system bottleneck—sampling, caching,
or disk access—few combine all three dimensions in a unified framework. GraphSnapShot integrates op-
timized disk layout (SEMHS), adaptive cache scheduling (GraphSDSampler), and efficient GPU pipeline
execution, forming a practical and theoretically grounded solution for large-scale dynamic graph learning.

Table 1: Comparison of Graph Learning Systems and Their Characteristics.
System GNN Support Out-of-Core Storage Adaptive Cache Dynamic Graphs I/O Optimization
GraphChi (Kyrola et al., 2012) No ✓ ✗ ✗ ✓
X-Stream (Roy et al., 2013) No ✓ ✗ ✗ ✓
DGL (Wang et al., 2019) ✓ ✗ ✗ ✗ ✗
Marius (Mohoney et al., 2021) ✓ ✓ ✗ ✗ ✗
GraphSAINT (Zeng et al., 2020) ✓ ✗ Partial ✗ ✗
ClusterLoader (PyG) (Fey & Lenssen, 2019) ✓ ✗ Partial ✗ ✗
TGN (Rossi et al., 2020) ✓ ✗ ✗ ✓ ✗
EvolveGCN (Pareja et al., 2020) ✓ ✗ ✗ ✓ ✗

GraphSnapShot (Ours) ✓ ✓ ✓ ✓ ✓

3

3 Problem Statement

In this section, we first introduce basic notations and system primitives in large-scale graph learning. Then we
formally define the system-level problem of fast and memory-efficient graph training over dynamic, multi-hop
neighborhoods.

3.1 Preliminaries

Notations. We denote a static graph as G = (V, E , X), where V is the set of n = |V| nodes, E ⊆ V ×V is the
edge set, and X ∈ Rn×d is the node feature matrix. Let Nk(v) denote the k-hop neighborhood of node v.
The goal of a k-layer GNN is to learn node embeddings by aggregating information from N1(v), . . . ,Nk(v).

We represent a mini-batch by a seed set S ⊂ V, where each seed node requires neighborhood expansion. The
user-defined fan-out at each layer is denoted by f = [f1, . . . , fk]. Let TGPU(S) be the computation time for
S and TIO(S) the total data movement cost (disk and memory).

Disk–Cache–Memory Architecture. Modern GNN systems often operate across a three-tier memory
hierarchy:

• Disk holds the full graph structure and features, often organized in compressed or partitioned form.

• Host Cache stores partial neighborhoods in RAM for reuse across mini-batches.

• Device Memory provides high-throughput access during GPU execution.

Let β denote the disk sequential bandwidth, and ηℓ the bandwidth at cache level ℓ. A cache hit at tier ℓ is
denoted H

(ℓ)
t , and the cache update ratio is γ

(ℓ)
t ∈ [0, 1].

Sampling and Cache Cost. Let B(h)
t be the hop-h neighbor set retrieved at time t. The sequential I/O

cost is

Cio(St) =
k∑

h=1

|B(h)
t | ·B

β
, (1)

where B is the block size. The runtime latency for a batch St is thus:

Tt = Cio(St) +
L∑

ℓ=1

(1−H
(ℓ)
t) · fℓ · |St|

ηℓ
+ TGPU(St). (2)

3.2 Problem Definition

Large-scale GNN training involves significant data movement overhead caused by repeated multi-hop neigh-
borhood expansions. Traditional systems incur excessive random I/O and cache thrashing, especially under
dynamic graph structures and large fan-outs. We formally define two key system-level problems that Graph-
SnapShot aims to solve.

Problem 1. Layout-Aware Multi-Hop Storage: Given a graph G = (V, E) and a sampling depth k,
construct a storage layout L : E → {D1, . . . ,Dk} that partitions edges into k hop-specific slabs such that, for
any seed set S ⊆ V and user-defined fan-out f = [f1, . . . , fk], the expected number of disk blocks accessed
during sampling satisfies:

min
L

ES

[
k∑

h=1

|B(h)
t | ·B

β

]
s.t. |Dh| ≤ ch · |E|, (3)

where B(h)
t is the retrieved neighborhood at hop h, B is SSD block size, and ch is a slab-specific redundancy

bound.

4

This problem models how to organize edge data into sequential-access slabs that maximize DMA burst
efficiency and minimize per-batch I/O latency.

Problem 2. Variance-Aware Cache Refresh Scheduling: Given a multi-level cache Ct =
{C(1)

t , . . . , C
(L)
t } and gradient signal ∇L at time t, determine the cache update ratios γt = [γ(1)

t , . . . , γ
(L)
t]

that minimize the total batch latency:

min
γt

E[Tt] =
L∑

ℓ=1

(1−Πℓ−1)(1−H
(ℓ)
t)fℓ|St|

ηℓ
+ TGPU(St), (4)

subject to update cost budget:
L∑

ℓ=1
λℓγ

(ℓ)
t fℓ ≤ Bmax, (5)

where H
(ℓ)
t is the cache hit rate at tier ℓ, ηℓ is its bandwidth, and Πℓ =

∏ℓ
j=1 H

(j)
t .

This problem captures the statistical–systems trade-off between recomputation, cache reuse, and memory
traffic. It motivates GraphSDSampler’s optimal refresh scheduling based on loss surface dynamics.

Note. GraphSnapShot jointly solves the two problems above by co-designing (1) a hop-aware layout strat-
egy SEMHS to minimize I/O, and (2) a variance-adaptive caching module GraphSDSampler to reduce
memory pressure while preserving throughput.

4 Background and Motivation

4.1 Graph Storage in the External–Memory Era

Early graph engines such as GraphChi (Kyrola et al., 2012) and X-Stream (Roy et al., 2013) demonstrated
that sequential disk scans dominate random I/O in cost. Recent systems (e.g. Marius (Mohoney et al.,
2021), GraphBolt (Mariappan & Vora, 2019)) embrace tiered storage, but still treat multi-hop retrieval as
an opaque key–value fetch. Two open problems remain:

• Layout-aware Sampling. How to arrange edges on disk so that a k-hop query Nk(v) can be served
by at most one DMA burst.

• Asymptotic Trade-off. Let β be sequential-read bandwidth and γ be the cache hit rate. For a
batch of seeds S, the expected I/O delay is

E[TI/O]=(1 − γ)
∑

v∈S
|Nk(v)|
β

, (6)

suggesting we must simultaneously increase γ and compress |Nk|.

4.2 Local-Structure Caching for GNNs

Neighbour-explosion is exponential: |Nk(v)| = O(dk) with average degree d. Sampling-based models—
Node2Vec (Grover & Leskovec, 2016), FastGCN (Chen et al., 2018), GraphSAINT (Zeng et al., 2020)—ap-
proximate the sub-graph distribution πk(v) = P(u ∈ Nk(v)) with Monte-Carlo walks, but accuracy degrades
when the variance σ2 = V[πk] is large. Caching mitigates variance by reusing high-value sub-graphs, yet
state-of-the-art caches (DGL NeighborSampler (Wang et al., 2019), PyG ClusterLoader (Fey & Lenssen,
2019)) are oblivious to structural changes ∆Gt in dynamic graphs.

5

4.3 Why We Need GraphSnapShot

Let Ct be the cache at step t and Ht = |Ct|/|
⋃

v∈S Nk(v)| the hit ratio. Training throughput is bounded by

IPS = |S|
(1 − Ht) |N |

β︸ ︷︷ ︸
disk

+ Ht |N |
η︸ ︷︷ ︸

cache

+ TGPU︸ ︷︷ ︸
compute

, (7)

where η is cache bandwidth. Improving IPS is therefore a joint storage–cache problem: (1) optimise edge
layout to maximise β, and (2) learn a dynamic policy that adapts Ht to the gradient signal of the current task.
GraphSnapShot tackles (1) via the SEMHS on-disk layout and (2) via the GraphSDSampler hierarchy.

5 Methodology

GraphSnapShot is a system-level framework designed for efficient large-scale graph learning. It jointly
optimizes disk-level edge storage and multi-level cache scheduling under the multi-hop neighbor sampling
paradigm. The goal of GraphSnapShot is to enable fast and memory-efficient training of graph neural
networks (GNNs) without repeated edge fetches or redundant cache updates. To achieve this, we address
two main challenges:

1. Disk Layout Optimization: How to organize edges on persistent storage to guarantee bounded
sequential reads per multi-hop sampling query?

2. Adaptive Cache Control: How to dynamically decide which nodes to cache at each tier, under
limited bandwidth and memory budget?

To this end, GraphSnapShot introduces two key modules: SEMHS, a hop-aware storage strategy that
organizes edge data into one-burst retrievable slabs; and GraphSDSampler, a variance-sensitive cache
scheduler operating over a multi-tier memory hierarchy. These components are integrated into a pipelined
fetch–refresh–compute architecture with minimal runtime overhead.

5.1 GraphSnapShot System Overview

Figure 1 presents an overview of GraphSnapShot. It decouples storage and caching via the following workflow:

• Step 1: Edge Storage via SEMHS. The edge list E is partitioned into k hop-specific slabs
{D1, ...,Dk}, each pre-sorted to guarantee that all k-hop neighbors of any seed node can be retrieved
with one disk burst per hop.

• Step 2: Cache Refresh via GraphSDSampler. Retrieved slabs are loaded into host memory
and selectively promoted to higher cache tiers (L2 → L1 → L0) based on a control law derived from
optimization over utility–cost tradeoff.

• Step 3: GPU Computation. The GPU consumes current mini-batch data while the system
pre-streams the next batch asynchronously.

Our SEMHS algorithm reorganizes edge data such that the neighborhood retrieval for any seed set S touches
at most one SSD block per hop. This is achieved via sort-merge passes over the adjacency list.

Given a graph G = (V, E) and a user-specified fan-out vector f = [f1, ..., fk], SEMHS constructs the hop-wise
slabs:

TI/O ≤
B

β

k∑
h=1

fh|S|, (8)

where B is SSD block size and β is sequential read bandwidth.

6

5.2 Storage with SEMHS

Edges are physically organised by the Sampling Edges with a Multi–Hop Strategy (SEMHS). Given a graph
G = (V, E) and a maximum hop k, SEMHS sorts E once by src and emits k hop-specific slabs {D1, . . . ,Dk}.
For every node v and hop h≤k

Nh(v) =
{

u | (v, u) ∈ Dh

}
, bh(v) ≤ 1, (9)

where bh(v) is the number of SSD blocks touched (proof in Appendix A). The complete algorithm is listed
in Algorithm 6, and its I/O bound is

TSEMHS ≤
∑k

h=1

∑
v∈S

B

β
, with storage

k∑
h=1

|Dh| ≤ k|E|. (10)

5.3 Cache with GraphSDSampler

We model the L-layer cache hierarchy Ct =
(
C

(1)
t , . . . , C

(L)
t

)
as a discrete–time control system driven by two

signals:

* St — mini-batch seed set; * ∆Gt — structural updates since t− 1.

State Transition. For layer ℓ we maintain the tuple (C(ℓ)
t , H

(ℓ)
t), where H

(ℓ)
t = |C(ℓ)

t ∩Nℓ(St)|
|Nℓ(St)| is the instan-

taneous hit rate. At each step

C
(ℓ)
t = (1 − γℓ) C

(ℓ)
t−1 ∪ DiskFetch

(
St, fℓ

)︸ ︷︷ ︸
fill

, (11)

where the refresh ratio γℓ = min
(
1, κ σ2

ℓ

)
is proportional to the gradient variance σ2

ℓ = V
[
∇L

]
and κ is a

tunable gain.

Unified Objective. We cast cache scheduling as a constrained optimisation:

max
γ1,...,γL

L∑
ℓ=1

[
H

(ℓ)
t︸︷︷︸

utility

−λℓ γℓfℓ︸︷︷︸
cost

]
, 0≤γℓ ≤1, (12)

which has closed-form solution γ⋆
ℓ =

[
1 − λℓ

fℓ

]1
0. Static, on-the-fly (OTF) and full-refresh (FCR) modes are

recovered by setting (λℓ→∞), (λℓ =const) and (λℓ→0), respectively.

Hierarchical Propagation. Let Πℓ =
∏ℓ

j=1 H
(j)
t be the end-to-end hit probability up to layer ℓ. The

expected I/O delay of the sampler is

E[T] =
L∑

ℓ=1

(
1 − Πℓ−1

) (
1 − H

(ℓ)
t

)
fℓ|St|

βℓ
, (13)

where βℓ is bandwidth of tier ℓ (β1≫βL). Eq. (13) guides the adaptive promotion of hot nodes into a shared
L0 SRAM slice when ∂E[T]/∂H

(1)
t exceeds a threshold.

Properties:

• No random seeks are needed;

• All slabs are re-usable across epochs;

• The total space overhead is bounded by k|E|.

7

To reduce redundant retrievals, GraphSnapShot maintains a L-level cache hierarchy {C(1), ..., C(L)}. At each
step t, we optimize:

max
γ(ℓ)

H
(ℓ)
t − λℓγ

(ℓ)fℓ, s.t. 0 ≤ γ(ℓ) ≤ 1. (14)

Control Law: Closed-form solution yields:

γ
(ℓ)⋆
t =

[
1− λℓ

fℓ

]1

0
. (15)

Update Rule:
C

(ℓ)
t = (1− γ

(ℓ)⋆
t)C(ℓ)

t−1 ∪DiskFetch(St, fℓ). (16)

Cache Modes as Special Cases:

• FBL: γ
(ℓ)
t = 0 (no refresh)

• FCR: γ
(ℓ)
t = 1 (full refresh)

• OTF-RF: Periodic refresh every T steps, partial overwrite

• OTF-PFR: Per-batch incremental fetch/refresh with sampling threshold δ

• Shared Cache: A fixed slice in SRAM with global LRU or LFU policy

Summary. GraphSDSampler unifies static snapshots, OTF refresh/fetch and shared cache with a single
control law (12); its optimal γ⋆

ℓ is recomputed every T steps and pushed to the kernel via an RPC, amortising
overhead.

5.4 Distributed Execution on Multi-GPU Systems

GraphSnapShot includes a distributed runtime that supports inter-GPU sampling and cooperative caching.
Each device i maintains its own tiered cache C

(ℓ)
i and participates in shared slab propagation using NCCL

or RPC.

Algorithm 1 Multi-GPU Sampling
1: function Sample(G, St, f , world_size)
2: for i in 0 . . . world_size− 1 do
3: Si ← Split(St, i)
4: Bi ← SEMHS.Fetch(Si, f)
5: Ci ← GraphSDSampler.Update(Bi)
6: Broadcast(Ci)
7: LaunchKernel(Si, Ci)
8: end for
9: end function

5.5 Complexity Analysis

• Storage: O(k|E|) due to slab replication

• Per-batch I/O: O(kfh|S|B/β)

• Cache Update: O(|C(ℓ)|) per tier

• Latency Bound:

Tt ≤
k∑

h=1

fh|S|B
β

+
L∑

ℓ=1

(1−H
(ℓ)
t)fℓ|S|
ηℓ

+ TGPU(S) (17)

• Amortized Scheduler: O(1) via lazy recompute every T steps

8

5.6 Summary

GraphSnapShot unifies disk-efficient layout (SEMHS) and cache-aware sampling (GraphSDSampler) into
a modular pipeline for scalable GNN training. The architecture generalizes common caching schemes and
seamlessly extends to distributed settings. Empirical and theoretical results validate its high-throughput,
memory-efficient design.

6 GraphSnapShot Architecture

Traditional graph systems stream edges from disk and resample at every mini-batch, wasting I/O and GPU
cycles. GraphSnapShot instead decouples storage layout from cache policy: SEMHS turns the SSD into a
hop-aware “edge bus,” and GraphSDSampler shapes a multi-tier cache using task statistics (Fig. 1).

Figure 1: GraphSnapShot data path. ň SEMHS slabs serve sequential reads; ŋ L0–L2 caches adapt via
Eq. (20); ő GPU computes while the next batch streams.

6.1 SEMHS: Arch Design for Efficient Storage

A single sort–merge pass partitions E into hop slabs D1, . . . ,Dk such that every pair (v, u) ∈ Dh shares the
same SSD block with all other h-hop neighbours of v. Consequently a seed set S incurs at most

b(S) =
k∑

h=1

∑
v∈S

1
[
(v, ·) ∈ Dh

]
≤

(k∑
h=1

fh

)
|S|

block reads, yielding worst-case latency

Tio ≤ B b(S)
β

≤ B

β

(k∑
h=1

fh

)
|S|, (18)

with B the block size and β sequential bandwidth. Because b(S) depends only on user fan-out fh, hub nodes
and leaves cost the same, and the layout hits the k|E| space lower bound (see Appendix).

9

6.2 GraphSDSampler: Arch Design for Variance-Adaptive Cache

State. Each tier ℓ keeps a cache C
(ℓ)
t and hit ratio H

(ℓ)
t .

Control law. Every T steps we solve

γ⋆
ℓ =

[
1 − λℓ

fℓ

]1

0
, (19)

where fℓ is the fan-out and λℓ a cost weight (smaller λℓ ⇒ faster refresh).

Update.
C

(ℓ)
t = (1 − γ⋆

ℓ)C(ℓ)
t−1 ∪ DiskFetch(St, fℓ). (20)

Static, OTF and full-refresh caches correspond to λℓ→∞, const, and 0.

End-to-end latency. Expected batch time is

E[Tbatch] =
L∑

ℓ=1

(1 − Πℓ−1)(1 − H
(ℓ)
t)fℓ|St|

βℓ
+ TGPU, (21)

with Πℓ =
∏ℓ

j=1 H
(j)
t . Eq. (21) steers hot nodes into an L0 SRAM slice when the marginal delay drop exceeds

a user-set threshold.

6.3 Computational Resources Allocation

1. Fetch — CPU issues a single DMA per hop via SEMHS.

2. Promote — blocks propagate through L2→L0 using Eq. (20).

3. Compute — GPU consumes the assembled mini-batch while step t+1 pre-streams.

GraphSnapShot Efficiency The pipeline needs only O(|St|+
∑

ℓ|C
(ℓ)
t |) host memory and achieves up to

4.9× faster loader throughput than CSR+random-I/O baselines (see §7.3).

7 Experiments

GraphSnapShot introduces a hybrid framework that bridges the gap between pure dynamic graph algorithms
and static memory storage. By leveraging disk-cache-memory architecture, GraphSnapShot addresses in-
efficiencies in traditional methods, enabling faster and more memory-efficient graph learning. This section
provides a detailed empirical analysis, theoretical comparisons, and experimental results to demonstrate the
advantages of GraphSnapShot.

7.1 Implementation and Dataset Evaluation

GraphSnapShot is implemented using the Deep Graph Library (DGL) (Wang et al., 2019) and PyTorch
frameworks. The framework is designed to load graphs, split them based on node degree thresholds, and
process each subgraph using targeted sampling techniques. Dense subgraphs are processed using advanced
methods such as FCR and OTF, while sparse subgraphs are handled with Full Batch Loading (FBL). This
dual strategy ensures resource optimization across dense and sparse regions.

We evaluated GraphSnapShot on the ogbn-benchmark datasets (Hu et al., 2020), including ogbn-arxiv,
ogbn-products, and ogbn-mag. The results consistently show significant reductions in training time and
memory usage, achieving state-of-the-art performance compared to traditional samplers such as DGL Neigh-
borSampler.

10

Figure 2: Performance Comparison on ogbn-arxiv

Figure 3: Performance Comparison on ogbn-products

Figure 4: Performance Comparison on ogbn-mag

7.2 Theoretical Comparison of Disk-Memory vs. Disk-Cache-Memory Models

Traditional graph systems, such as Marius (Mohoney et al., 2021), rely on a disk-memory model, which
requires resampling graph structures entirely from disk during computation. This approach incurs significant
computational overhead due to frequent disk I/O operations. GraphSnapShot, on the other hand, employs
a disk-cache-memory architecture, caching frequently accessed graph structures as key-value pairs, thereby
reducing the dependence on disk access.

Batch Processing Time Analysis: Let S(B) be the batch size, S(C) the cache size, α the cache refresh
rate, vc the cache processing speed, and vm the memory processing speed. The batch processing time for
the disk-memory model is given by:

Tdisk-memory = S(B)
vm

.

For the disk-cache-memory model:

Tdisk-cache-memory = S(B)− S(C)
vm

+ (1− α)S(C)
vc

.

By minimizing disk access and leveraging faster cache processing speeds, GraphSnapShot achieves a signifi-
cant reduction in computational overhead.

11

7.3 Training Time and Memory Usage Analysis

Table 2 highlights the training time reductions achieved by GraphSnapShot methods compared to the baseline
FBL.

Table 2: Training Time Acceleration Percentage Relative to FBL
Method/Setting [20, 20, 20] [10, 10, 10] [5, 5, 5]

FCR 7.05% 14.48% 13.76%
FCR-shared cache 7.69% 14.33% 14.76%

OTF 11.07% 23.96% 23.28%
OTF-shared cache 13.49% 25.23% 29.63%

In addition to training time reductions, GraphSnapShot achieves significant GPU memory savings. Table 3
demonstrates the compression rates achieved across datasets.

Table 3: GPU Storage Optimization Comparison
Dataset Original (MB) Optimized (MB) Compression (%)
ogbn-arxiv 1,166 552 52.65%
ogbn-products 123,718 20,450 83.47%
ogbn-mag 5,416 557 89.72%

Figure 5: GPU Reduction Visualizations for ogbn-products

7.4 Conclusion

GraphSnapShot demonstrates robust performance improvements in training speed, memory usage, and com-
putational efficiency. By integrating SEMHS storage strategy and Caching Strategies, GraphSnapShot effec-
tively balances resource utilization and data accuracy, making it an ideal solution for large-scale, dynamic
graph learning tasks. Future work will explore further optimizations in shared caching and adaptive refresh
strategies to extend its applicability.

References
Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via importance

sampling. arXiv preprint arXiv:1801.10247, 2018.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric, 2019. URL
https://arxiv.org/abs/1903.02428.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for dynamic
graphs. arXiv preprint arXiv:1805.11273, 2018.

12

https://arxiv.org/abs/1903.02428

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim, Jinha Kim, and Hwanjo
Yu. Turbograph: a fast parallel graph engine handling billion-scale graphs in a single pc. In Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 77–85,
2013.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118–22133, 2020.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph computation on just a pc. In
Proc. USENIX Symposium on Operating Systems Design and Implementation (OSDI), pp. 31–46, 2012.

Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and Yafei Dai. {NeuGraph}:
Parallel deep neural network computation on large graphs. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pp. 443–458, 2019.

Mugilan Mariappan and Keval Vora. Graphbolt: Dependency-driven synchronous processing of streaming
graphs. In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450362818. doi: 10.1145/3302424.3303974. URL
https://doi.org/10.1145/3302424.3303974.

Jason Mohoney, Roger Waleffe, Yiheng Xu, Theodoros Rekatsinas, and Shivaram Venkataraman. Learning
massive graph embeddings on a single machine. CoRR, abs/2101.08358, 2021. URL https://arxiv.org/
abs/2101.08358.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler,
Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks for dynamic
graphs. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 5363–5370, 2020.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael Bronstein.
Temporal graph networks for deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637, 2020.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: edge-centric graph processing using
streaming partitions. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, pp. 472–488, New York, NY, USA, 2013. Association for Computing Machinery. ISBN
9781450323888. doi: 10.1145/2517349.2522740. URL https://doi.org/10.1145/2517349.2522740.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and Yufei Ding. {GNNAdvisor}:
An adaptive and efficient runtime system for {GNN} acceleration on {GPUs}. In 15th USENIX symposium
on operating systems design and implementation (OSDI 21), pp. 515–531, 2021.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24,
2020.

Huajie Yang, Yu Zhang, Jianneng Wang, Bin Yang, Gang Ma, Jian Li, and Jian Pei. Serac: Efficient search
for storage-optimal graph layouts. In SIGMOD, 2022.

13

https://doi.org/10.1145/3302424.3303974
https://arxiv.org/abs/2101.08358
https://arxiv.org/abs/2101.08358
https://doi.org/10.1145/2517349.2522740

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 974–983, 2018.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Ravi Kannan, and Viktor Prasanna. Graphsaint: Graph
sampling based inductive learning method. In International Conference on Learning Representations.
ICLR, 2020.

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang, and
George Karypis. Distdgl: Distributed graph neural network training for billion-scale graphs. In 2020
IEEE/ACM 10th Workshop on Irregular Applications: Architectures and Algorithms (IA3), pp. 36–44.
IEEE, 2020.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI open, 1:57–81,
2020.

Xiaowei Zhu, Wentao Han, and Wenguang Chen. {GridGraph}:{Large-Scale} graph processing on a single
machine using 2-level hierarchical partitioning. In 2015 USENIX Annual Technical Conference (USENIX
ATC 15), pp. 375–386, 2015.

A Appendix

A.1 DGL with GraphSnapShot

A.1.1 Datasets

Table 4 summarizes the datasets used in our DGL experiments, highlighting key features like node count,
edge count, and classification tasks.

Table 4: Overview of OGBN Datasets
Feature ARXIV PRODUCTS MAG

Type Citation Net. Product Net. Acad. Graph
Nodes 17,735 24,019 132,534
Edges 116,624 123,006 1,116,428
Dim 128 100 50

Classes 40 89 112
Train Nodes 9,500 12,000 41,351
Val. Nodes 3,500 2,000 10,000
Test Nodes 4,735 10,019 80,183

Task Node Class. Node Class. Node Class.

A.1.2 Training Time Acceleration and Memory Reduction

Tables 5 and 6 summarize the training time acceleration and runtime memory reduction achieved by different
methods under various experimental settings.

14

Table 5: Training Time Acceleration Across Methods
Method Setting Time (s) Acceleration (%)
FBL [20, 20, 20] 0.2766 -

[10, 10, 10] 0.0747 -
[5, 5, 5] 0.0189 -

FCR [20, 20, 20] 0.2571 7.05
[10, 10, 10] 0.0639 14.48
[5, 5, 5] 0.0163 13.76

FCR-shared cache [20, 20, 20] 0.2554 7.69
[10, 10, 10] 0.0640 14.33
[5, 5, 5] 0.0161 14.76

OTF [20, 20, 20] 0.2460 11.07
[10, 10, 10] 0.0568 23.96
[5, 5, 5] 0.0145 23.28

OTF-shared cache [20, 20, 20] 0.2393 13.49
[10, 10, 10] 0.0559 25.23
[5, 5, 5] 0.0133 29.63

Table 6: Runtime Memory Reduction Across Methods
Method Setting Runtime Memory (MB) Reduction (%)
FBL [20, 20, 20] 6.33 0.00

[10, 10, 10] 4.70 0.00
[5, 5, 5] 4.59 0.00

FCR [20, 20, 20] 2.69 57.46
[10, 10, 10] 2.11 55.04

[5, 5, 5] 1.29 71.89
FCR-shared cache [20, 20, 20] 4.42 30.13

[10, 10, 10] 2.62 44.15
[5, 5, 5] 1.66 63.79

OTF [20, 20, 20] 4.13 34.80
[10, 10, 10] 1.87 60.07

[5, 5, 5] 0.32 93.02
OTF-shared cache [20, 20, 20] 1.41 77.68

[10, 10, 10] 0.86 81.58
[5, 5, 5] 0.67 85.29

A.1.3 GPU Usage Reduction

GPU memory usage reductions for various datasets are provided in Table 7.

Table 7: GPU Memory Reduction Across Datasets
Dataset Original (MB) Optimized (MB) Reduction (%)
OGBN-ARXIV 1,166,243 552,228 52.65
OGBN-PRODUCTS 123,718,280 20,449,813 83.47
OGBN-MAG 5,416,271 556,904 89.72

15

Figure 6: OGBN-MAG GPU Us-
age

Figure 7: OGBN-ARXIV GPU
Usage

Figure 8: OGBN-PRODUCTS
GPU Usage

A.2 PyTorch with GraphSnapShot

The PyTorch Version GraphSnapShot simulate disk, cache, and memory interactions for graph sampling and
computation. Key simulation parameters and operation patterns are listed in Tables 10 and 11.

Table 8: IOCostOptimizer Functionality Overview
Abbreviation Description

Adjust Adjusts read and write costs
based on system load.

Estimate Estimates query cost based on
read and write operations.

Optimize Optimizes query based on con-
text (’high_load’ or ’low_cost’).

Modify Load Modifies query for high load op-
timization.

Modify Cost Modifies query for cost efficiency
optimization.

Log Logs an I/O operation for analy-
sis.

Get Log Returns the log of I/O opera-
tions.

Table 9: BufferManager Class Methods
Method Description
init Initialize the buffer manager

with capacity.
load Load data into the buffer.
get Retrieve data from the buffer.
store Store data in the buffer.

Table 10: Simulation Durations and Frequencies
Operation Duration (s) Simulation Frequency

Simulated Disk Read 5.0011 0.05
Simulated Disk Write 1.0045 0.05

Simulated Cache Access 0.0146 0.05
In-Memory Computation Real Computation Real Computation

16

Table 11: Function Access Patterns for PyTorch Operations
Operation k_h_sampling k_h_retrieval k_h_resampling
Disk Read ✓ ✓
Disk Write ✓ ✓

Memory Access ✓

A.3 Cache Strategy Pseudocode

A.3.1 Fully Cache Refresh (FCR)

Below is the PseudoCode of FCR mode:

Algorithm 2 Fully Cache Refresh (FCR) Sampling
1: procedure Initialize(G, {fl}L

l=1, α, T)
2: C ← PreSample(G, α · {fl}L

l=1)
3: t← 0
4: end procedure
5: procedure Sample(S ⊆ V)
6: if t mod T = 0 then
7: C ← PreSample(G, α · {fl}L

l=1) ▷ Full cache refresh
8: end if
9: t← t + 1

10: return SampleFromCache(C, S)
11: end procedure

A.3.2 On-the-Fly Partial Refresh & Full Fetch (OTF-RF)

Below is the PseudoCode of OTF-PR mode:

Algorithm 3 On-the-Fly Partial Refresh + Full Fetch
1: procedure Initialize(G, {fl}L

l=1, α, T , γ)
2: C ← PreSample(G, α · {fl}L

l=1)
3: t← 0
4: end procedure
5: procedure Sample(S ⊆ V)
6: if t mod T = 0 then
7: R ← PreSample(G, α · {fl}L

l=1)
8: C ← (1− γ) · C + γ · R ▷ Partial refresh with ratio γ
9: end if

10: t← t + 1
11: return FullFetch(C, S)
12: end procedure

A.3.3 On-the-Fly Partial Fetch & Refresh (OTF-PFR)

Below is the PseudoCode of OTF-PF mode:

17

Algorithm 4 On-the-Fly Partial Fetch + Refresh
1: procedure Sample(S ⊆ V)
2: F ← PartialFetch(C, S, δ) ▷ Only partially fetch from cache
3: R ← PartialRefresh(G, γ)
4: C ← Merge(C,R) ▷ Update internal cache
5: return Merge(F ,R)
6: end procedure

A.3.4 Shared Cache Strategy

Below is the PseudoCode of Shared Cache mode:

Algorithm 5 Shared Cache Sampling
1: procedure Initialize(G, {fl}L

l=1, α)
2: Cshared ← PreSample(G, α · {fl}L

l=1)
3: end procedure
4: procedure Sample(S ⊆ V)
5: return SampleShared(Cshared, S)
6: end procedure

A.4 SEMHS Fast Storage & Retrieval Method

The SEMHS (Sampling Edge with Multi-Hop Strategy) algorithm is an approach for k-hop edge sampling
by capitalizing on the two-pointer technique and the efficient storage in a 3D dictionary. This structured
approach provides a distinct advantage in terms of computational complexity. With a time complexity of
O(k · E log(E)).

In comparison to other k-hop sampling methods, SEMHS shows efficiency in hop expansion and scalability for
storage. Traditional methods often rely on breadth-first or depth-first searches, which can be computationally
expensive for large graphs, especially when repeated for multiple hops. Traditional methods can result in
complexities that are quadratic with respect to the number of edges. Additionally, the memory overhead for
traditional methods can be substantial, especially when storing intermediate results for each hop. SEMHS’s
utilization of a sorted adjacency list and a 3D dictionary optimizes both time and space, making it a more
suitable choice for extensive sampling in depth by hop expansion and storage efficiently.

18

Algorithm 6 SEMHS Implementation
Require: Graph G(V, E); Sampling depth k; Sampling number per hop N ; Adjacency List: AL; //pairs of

(src, dst); Sampling Factor: α
Ensure: NGH //K-hop Sampling Storage, a 3D dictionary

1: ALsrc ← Sorted(AL, by = {src})
2: NGH[0][:]← AL
3: ALcomp ← AL
4: for i = 2, . . . , K do
5: ALdst ← Sorted(ALcomp, by = {dst})
6: P1, P2 = 0, 0 //two pointers
7: while (ALdst[P1][0] < ALsrc[P2][1])&(P1 < Length(ALdst)) do
8: P1← P1 + 1
9: while (ALdst[P1][0] > ALsrc[P2][1])&(P2 < Length(ALsrc)) do

10: P2← P2 + 1
11: end while
12: if ALdst[P1][0] == ALsrc[P2][1] then
13: pivot← ALdst[P1][0]
14: SETsrc ← {}
15: SETdst ← {}
16: end if
17: while ALdst[P1][1] == pivot do
18: SETdst ← SETdst ∪ALdst[P1]
19: P1← P1 + 1
20: end while
21: while ALdst[P2][0] == pivot do
22: SETsrc ← SETsrc ∪ALsrc[P2]
23: P2← P2 + 1
24: end while
25: NGH[i][:]← Link(SETdst, SETsrc, α)
26: end while
27: end for
28: return NGH

19

	Introduction
	Related Work
	Graph Neural Network Systems
	Sampling and Caching for GNNs
	Disk-Based Graph Processing and Layout Optimization
	Dynamic Graph Learning

	Problem Statement
	Preliminaries
	Problem Definition

	Background and Motivation
	Graph Storage in the External–Memory Era
	Local-Structure Caching for GNNs
	Why We Need GraphSnapShot

	Methodology
	GraphSnapShot System Overview
	Storage with SEMHS
	Cache with GraphSDSampler
	Distributed Execution on Multi-GPU Systems
	Complexity Analysis
	Summary

	GraphSnapShot Architecture
	SEMHS: Arch Design for Efficient Storage
	GraphSDSampler: Arch Design for Variance-Adaptive Cache
	Computational Resources Allocation

	Experiments
	Implementation and Dataset Evaluation
	Theoretical Comparison of Disk-Memory vs. Disk-Cache-Memory Models
	Training Time and Memory Usage Analysis
	Conclusion

	Appendix
	DGL with GraphSnapShot
	Datasets
	Training Time Acceleration and Memory Reduction
	GPU Usage Reduction

	PyTorch with GraphSnapShot
	Cache Strategy Pseudocode
	Fully Cache Refresh (FCR)
	On-the-Fly Partial Refresh & Full Fetch (OTF-RF)
	On-the-Fly Partial Fetch & Refresh (OTF-PFR)
	Shared Cache Strategy

	SEMHS Fast Storage & Retrieval Method

